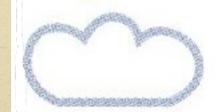


Le biomasse utilizzabili a scopo energetico

Ing. Simone Pedrazzi Ph.D., Bio~Energy Efficiency Laboratory, Dep. Of Engineering "Enzo Ferrari", Modena


Biomassa:

"la parte <u>biodegradabile</u> dei <u>prodotti</u>, <u>rifiuti</u> e <u>residui</u> provenienti dall'agricoltura (comprendente sostanze vegetali e animali) e dalla silvicoltura e dalle industrie connesse, compresa la pesca e l'acquacoltura, gli sfalci e le potature provenienti dal verde urbano nonché la parte biodegradabile dei rifiuti industriali e urbani "

Il ciclo del carbonio

Atmospheric carbon dioxide, water and sunlight

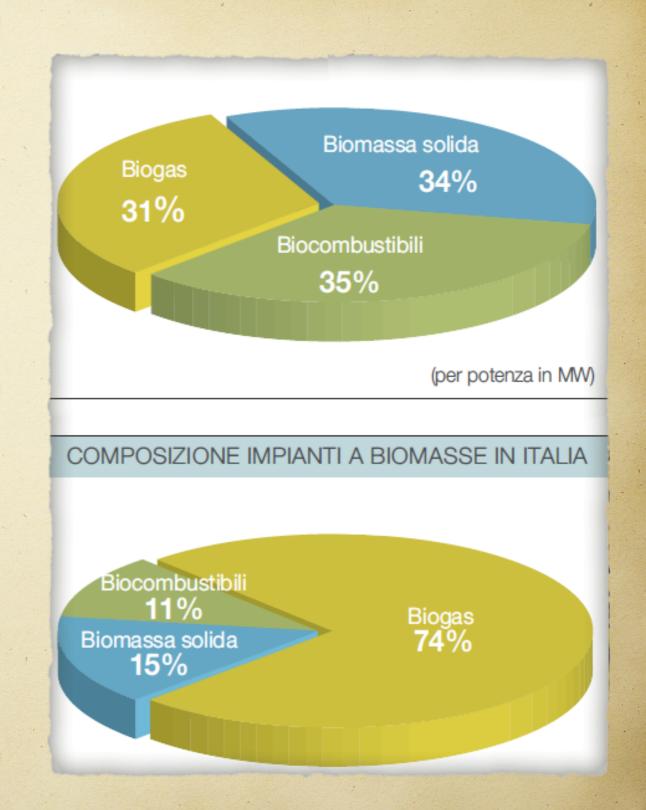
Carbon released back into the atmosphere

Converted into new plant material through photosynthesis Carboidrati

Lignina

Proteine

Lipidi


Which is harvested and burnt

Impianti a biomassa in Italia

Potenza prodotta

115

n° impianti

Da dove provengono le biomasse?

Comparto Forestale

Comparto Agricolo

Da dove provengono le biomasse?

Comparto Rifiuti

Comparto Zootecnico

Comparto Industriale

Comparto Forestale

Vastità della materia prima (32% territorio nazione è boschivo)

Vs

Reperibilità, densificazione, stoccaggio ed umidità

Composizione	
Cellulosa	50% della ss
Emicellulosa	10-30% della ss
Lignina	20-30% della ss
Caratteristiche fisiche ed energetiche	
Umidità	25-60% sul t.q.
Densità di massa	800-1.120 kg/m ³
p.c.i. (considerando un'umidità del 12-15%)	3.600-3.800 kcal/kg
Fonte: AREA Science Park	

Residui di attività produttive

Sottoprodotto	Umidità alla raccoltà (%)	Produzione media (t/ha)	Rapporto C/N	Ceneri (% in peso)	p.c.i. (kcal/kg ss)
Paglia frumento tenero	14-20	3-6	120-130	7-10	4.100-4.200
Paglia frumento duro	14-20	3-5	110-130	7-10	4.100-4.200
Paglia altri cereali autunno-vernini	14-20	3-5,5	60-65	5-10	3.300-3.400
Paglia riso	20-30	3-5	60-65	10-15	3.700-3.800
Stocchi mais	40-60	4.5-6	40-60	5-7	4.000-4.300
Tutoli e brattee di mais	30-55	1,5-2,5	70-80	2-3	4.000-4.300
Sarmenti vite	45-55	3-4	60-70	2-5	4.300-4.400
Frasche di olivo	50-55	1-2,5	30-40	5-7	4.400-4.500
Residui fruttiferi	35-45	2-3	47-55	10-12	4.300-4.400

Fonte: ITABIA – Italian Biomass Association

Colture energetiche

Alcoligene
vs
Oleaginose
vs
da termo-conversione

Alcoligene

VS

Oleaginose

VS

da termo-conversione

Canna da zucchero, Barbabietola, Sorgo Frumento, Mais..

Alcoligene

Girasole, Colza, Soia, Lino

Palma da olio

VS

Oleaginose

VS

da termo-conversione

Girasole, Colza, Soia, Lino

Palma da olio

Alcoligene

VS

Oleaginose

VS

	ton. semi/ha	litri olio/ lia
COLTURA		952
GIRASOLE	2,5-4	446
SOIA	2,5-3	1.190
COLZA	2,5-3	4.500
PALMA DA OLIO	II.u	

da termo-conversione

Alcoligene
vs
Oleaginose
vs
da termo-conversione

Arundo, Switchgrass, Miscanto, Pioppo, Paulonia (SRF)

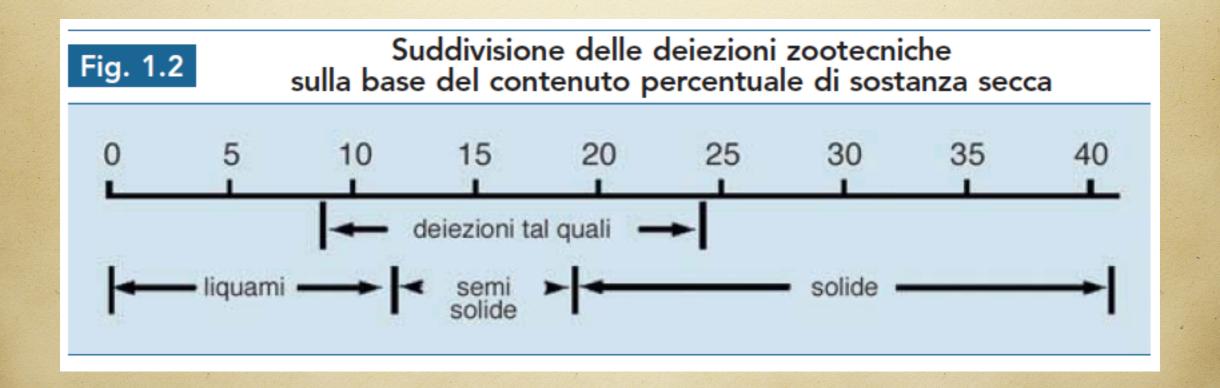
Comparto Industriale

- ! Da definire se sono sotto-prodotti o rifiuti!
- Scarti di legno vergine

(segherie, carpenterie, falegnamerie)

Scarti di legno trattato

(i.e. mobilifici: presenza di residui come colle o vernici)


Scarti di legno impregnato

(traversine, pali telefonici,.. presenza di preservanti, sali e solventi)

Comparto Zootecnico

Reflui di allevamento

Deiezioni

Comparto Rifiuti

La distinzione tra biomasse e rifiuti è spesso labile

- Rifiuti solidi urbani (non sono biomasse) ma sfruttano tecnologie simili di conversione
- Manutenzione del "verde" pubblico
- Frazione umida dei rifiuti solidi urbani

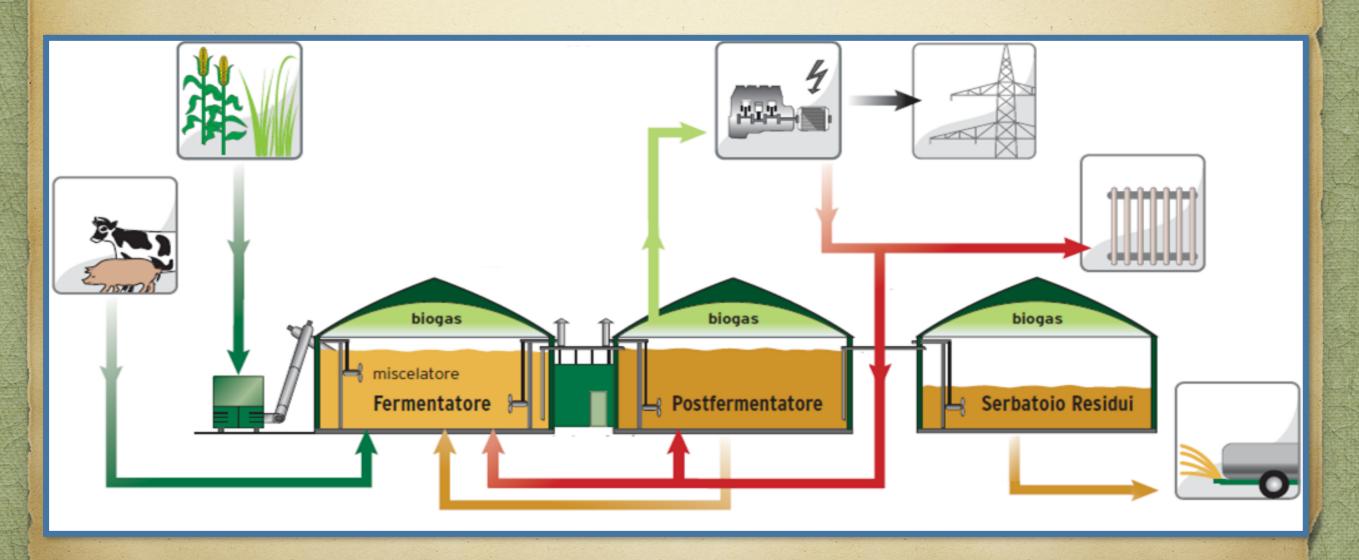
Come trasformo le biomasse in energia?

Conversione Termo-Chimica

Come trasformo le biomasse in energia?

Conversione Termo-Chimica

Digestione Anaerobica


Biogas

Esterificazione Bio-diesel

Fermentazione Bio-etanolo

Digestione Anaerobica

Biogas

Digestione Anaerobica

Biogas biomasse impiegabili nel processo

- · ¿ Liquame suino
- · Colture non alimentari ad uso energetico
- · ¿ Liquame bovino
- · Scarti organici e acque reflue da agroindustria

· Pollina

- · Fanghi di depurazione
- · Frazioni organiche di rifiuti urbani

Con il termine "solidi volatili" si indica la quota di materia decomponibile rispetto a un certo quantitativo di materia prima introdotta nel digestore dell'impianto.

Materiali	m³ biogas/t SV
Deiezioni animali (suini, bovini, avicunicoli)	200 - 500
Residui colturali (paglia, colletti barbabietole, ecc.)	350 - 400
Scarti organici agroindustria (siero, scarti vegetali, lieviti, fanghi e reflui di distillerie, birrerie e cantine, ecc.)	400 - 800
Scarti organici macellazione (grassi, contenuto stomacale e intestinale, sangue, fanghi di flottazione, ecc.)	550 - 1.000
Fanghi di depurazione	250 - 350
Frazione organica rifiuti urbani	400 - 600
Colture energetiche (mais, sorgo zuccherino, erba, ecc.)	550 - 750

Digestione Anaerobica

Biogas

Esterificazione

Bio-diesel

Fermentazione

Bio-etanolo

BIOETANOLO

IL PROCESSO DIPENDE DALLA COMPLESSITA' CHIMICA DELLA BIOMASSA DI PARTENZA

- · Processo di fermentazione alcolica
- · F. Termolisi
- · &·Idrolisi
- · Gassificazione + F-T

BIOETANOLO

affinità rispetto la benzina

- · Miscibilità fino al 10% senza modifiche al motore, leggero aumento delle prestazioni
- · Per motori di ultima generazione miscibilità fino al 23.5%
- Per motori flex-fuel si possono toccare punte di 85%, è necessario un avanzato sistema di controllo per "riconoscere" il tipo di combustibile immesso
- · Aumento dei consumi, possibili difficoltà di avviamento a freddo

Digestione Anaerobica
Biogas

Esterificazione
Bio-diesel

Fermentazione Bio-etanolo

BIOCOMBUSTIBILI BIODIESEL

- · Oli vegetali vergini: colza, soia, senape, olio di palma e alghe.
- · ¿·Olio vegetale di scarto.
- · & Grassi animali.

	Unità	Diesel	Biodiesel EN 14214	Olio di girasole	Olio di colza
Potere calorifico	MJ/kg	42,7	37,2	37,7	37,6
Densità a 15 °C	kg/l	0,83	0,86-0,9	0,92	0,91
Contenuto energetico (volumetrico)	MJ/l	35,2	32,7	34,8	34,2
Viscosità a 40 °C	mm ² /s	2-4,5	3,5-5	31,4	36
Punto di infiammabilità	°C	> 55	≥ 120	253	> 220

Come trasformo le biomasse in energia?

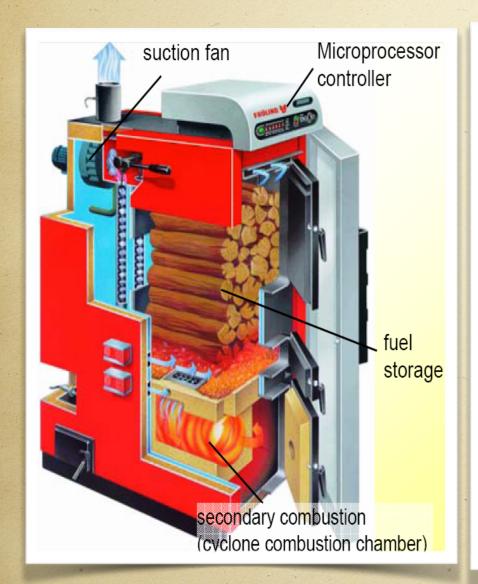
Conversione Termo-Chimica

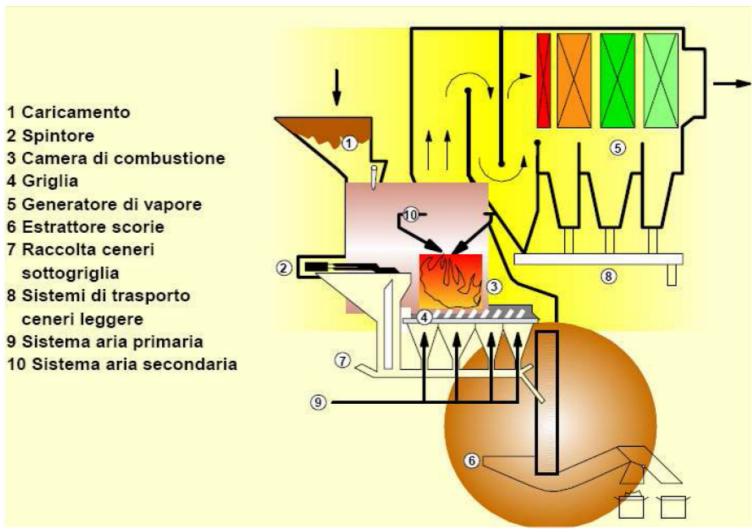
Conversione Termo-Chimica

Gassificazione e Pirolisi
MOTORI

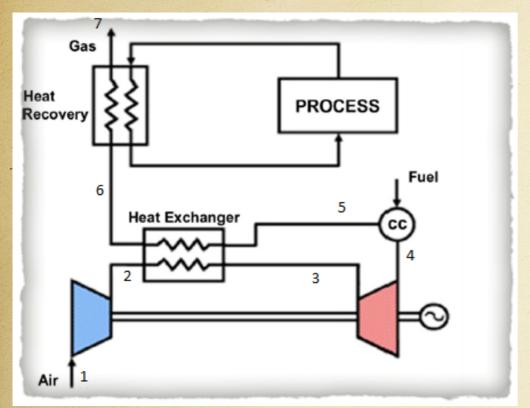
Combustione Diretta

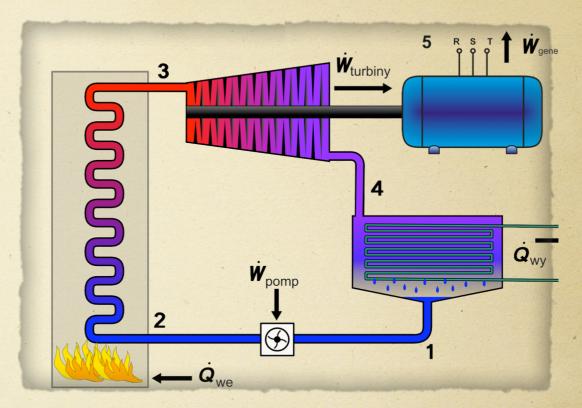
Caldaie


Combustione Diretta
MOTORI

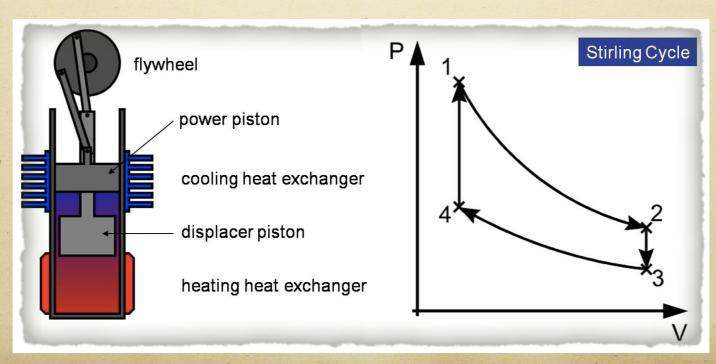

Tipologia di combustibile

Conversione Termochimica


Dalla piccola alla grande taglia



Come sfrutto l'energia termica generata in caldaia?

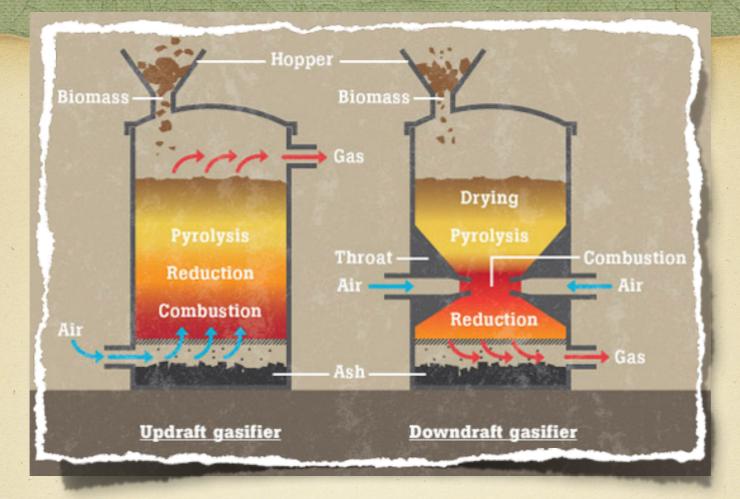

EFGT

ORC

STIRLING

Conversione Termo-Chimica

Gassificazione e Pirolisi MOTORI Combustione Diretta


Caldaie

Combustione Diretta
MOTORI

La gassificazione converte per via termochimica un combustibile solido in un vettore gassoso: la trasformazione avviene in un reattore stagno, in carenza di ossigeno ed a temperature intorno ai 1000 gradi.

Si produce direttamente dalle biomasse un gas combustibile composto essenzialmente da:

H₂, CO, CO₂, CH₄ ed N₂

UTILIZZO DEL SYNGAS

Generatori di calore ad uso industriale

Motori endotermici alternativi per la produzione di energia elettrica e calore da cogenerazione

Celle a combustibile a carbonati fusi MCFC e ad ossidi solidi SOFC

Processo Fischer - Tropsch per la generazione di combustibili liquidi

Conversione Termo-Chimica

Gassificazione e Pirolisi
MOTORI

Combustione Diretta

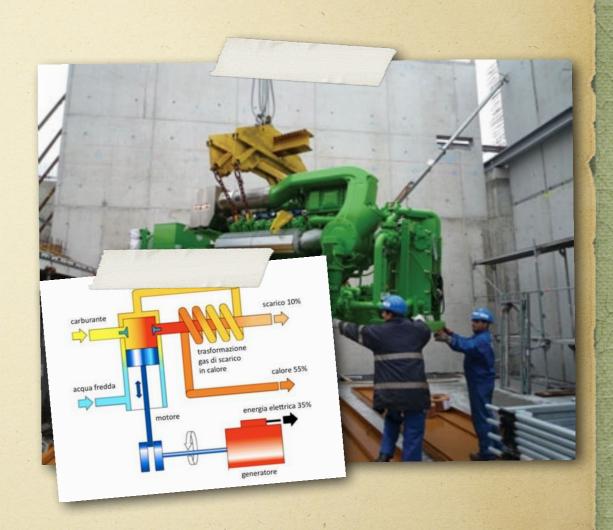
Caldaie

Combustione Diretta

MOTORI

Vantaggi:

Tecnologia consolidata (motori di derivazione navale o autotrasporto)


Costi per kW contenuti

Buon rendimento di conversione

Svantaggi:

Manutenzione frequente e costosa Emissioni specifiche elevate Rumorosità e vibrazioni Sensibilità all'H₂S

Motori a PVO

	Unità	Diesel	Biodiesel EN 14214	Olio di girasole	Olio di colza
Potere calorifico	MJ/kg	42,7	37,2	37,7	37,6
Densità a 15 °C	kg/l	0,83	0,86-0,9	0,92	0,91
Contenuto energetico (volumetrico)	MJ/l	35,2	32,7	34,8	34,2
Viscosità a 40 °C	mm²/s	2-4,5	3,5-5	31,4	36
Punto di infiammabilità	°C	> 55	≥ 120	253	> 220

Le biomasse utilizzabili a scopo energetico

Ing. Simone Pedrazzi Ph.D., Bio~Energy Efficiency Laboratory, Dep. Of Engineering "Enzo Ferrari", Modena

