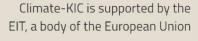


Termoconversione dei residui fluviali

PIROLISI DELLA FRAZIONE ERBACEA

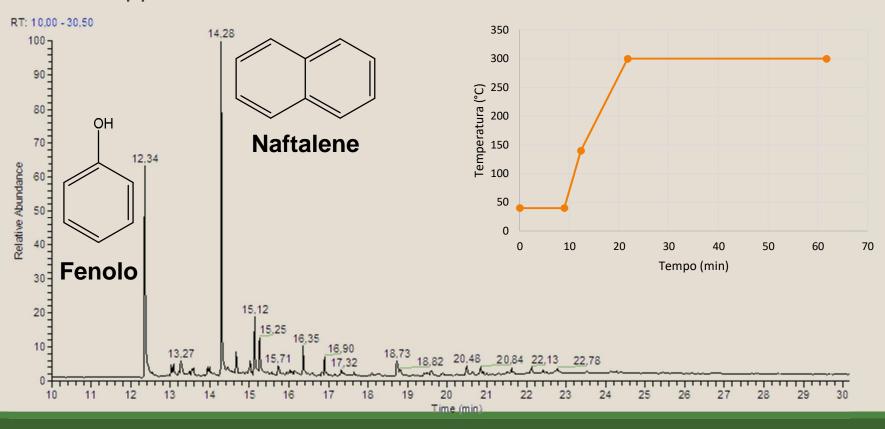
Dr. Giorgio Zattini Assegnista CIRI-MAM per REBAF

Prof. Loris Giorgini

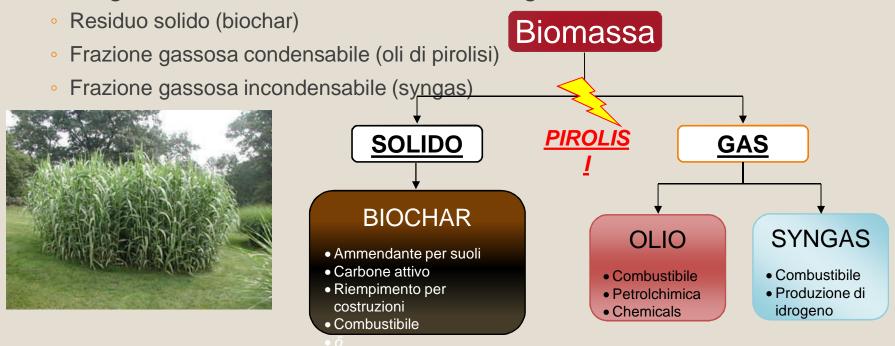

Referente CIRI-MAM per REBAF

- Centro Interdipartimentale per la Ricerca Industriale della Università di Bologna nel campo della Meccanica Avanzata e Materiali (CIRI-MAM)
- Ruolo nel progetto
 - Supporto allo sviluppo e progettazione dellampianto di pirolisi, pirogassificazione e gassificazione di biomasse;
 - Analisi preliminari di biomasse e simulazione di processi di pirolisi e gassificazione;
 - Recupero di materie prime seconde (oli di pirolisi, biochar)
 - Caratterizzazione dei prodotti ottenuti (syngas, tar e biochar) e sulla loro ottimizzazione allo scopo di assicurare un vantaggio ambientale ecosostenibile.
- Due assegnisti di ricerca assegnati al progetto, oltre alle competenze personale strutturato CIRI-MAM/UniBO

- Il risultato del TSP è una soluzione di tar in isopropanolo (circa 350 g). La soluzione contiene frequentemente polveri/particelle sospese:
 - La soluzione viene filtrata
 - Il solvente viene evaporato fino ad ottenere i soli tar
 - La quantità di tar viene determinata gravimetricamente e rapportata al volume di syngas campionato



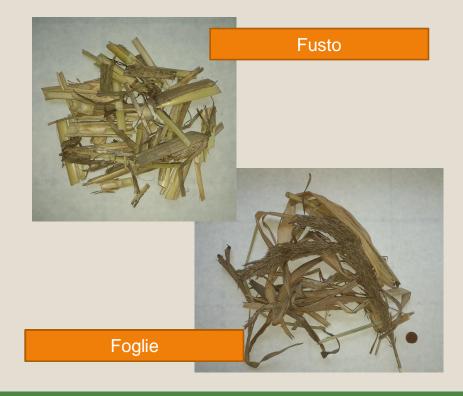
 Dopo la determinazione quantitativa, i tar sono stati ridisciolti in un opportuno solvente e analizzati tramite GC-MS



Pirolisi di biomasse

Trattamento termico a moderate temperature in assenza di ossigeno

La degradazione termica dei materiali origina 3 flussi in uscita:



Il modello: Arundo Donax

Per avere un parametro di confronto, prima di effettuare analisi sui campioni «reali», è stata analizzata una biomassa modello

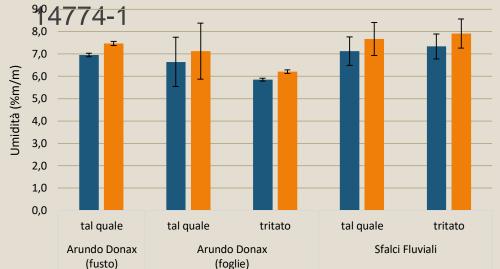
Arundo Donax (A.D.), Canna comune

- Prevalentemente erbacea
- Biomassa molto disomogenea
 - "Composizione variabile
 - "Campionamento difficoltoso

PINTERDIPARTIMENTALE DI RICERCA INDUSTRIALE CENTRO CE CENTRO CENT campioni

I campioni ricevuti sono stati precedentemente ridotti di dimensioni, ma è stata necessaria unqulteriore diminuzione dimensionale per le analisi successive

Il fusto di Arundo Donax non è stato triturato in quanto troppo coriaceo per le apparecchiature in nostro possesso



Contenuto di umidità

- Fondamentale per i processi di conversione termica (pirolisi, gassificazione)
- Parametro dipendente da condizioni esterne (clima, stoccaggio, õ)

Procedura modificator sulla base dello standard UNI EN ISO

modesta per tutti i campioni

La procedura di triturazione non sembra influenzare il dato in maniera

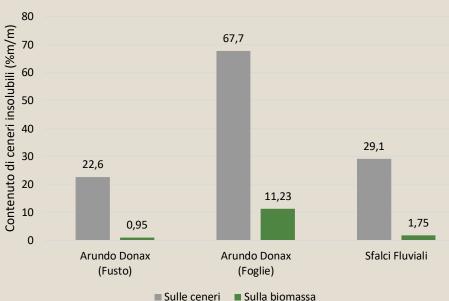
significativa

Contenuto di ceneri

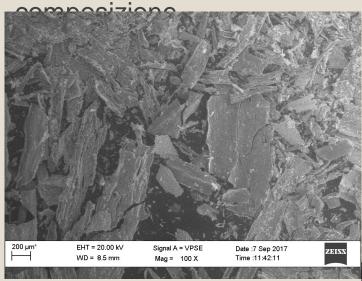
Parametro utile per determinare il «rendimento» di una biomassa

- Quantità di materia degradabile in pirolisi
- Qualità del biochar (composizione elementare e quantità di C)

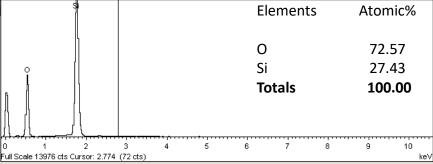
Procedura modificata sulla base dello standard UNI EN ISO 14775, sui campioni precedentemente utilizzati per la


determinazione dellaumidità 20,0 18,0 Contenuto di ceneri (%m/m) 16,0 14,0 12,0 10,0 8,0 6,0 4,0 2,0 0,0 Arundo Donax Arundo Donax Sfalci Fluviali (fusto) (foglie)

MERCHANISMENTALE MATERIAL CONTROL OF CENTROL OF CENTROL


Un campione di ceneri è stato sottoposto a mineralizzazione con HNO₃ conc., in microonde a 200°C

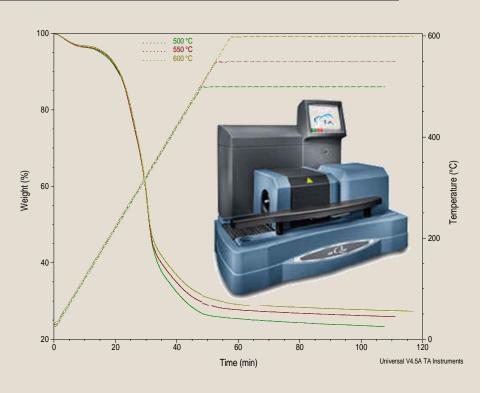

 Dopo il trattamento rimane una frazione insolubile, gelatinosa e grigiastra, separata per filtrazione, essiccata e quantificata per via gravimetrica



Sono state effettuate analisi SEM-EDX per la morfologia e

Il residuo insolubile è interamente costituito da silicio e ossigeno, indice della presenza di silice e silicati

Composizione delle ceneri

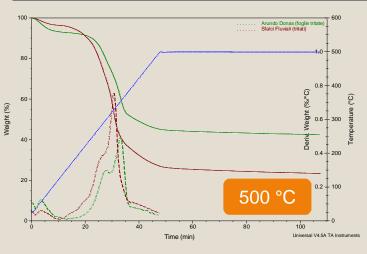

La frazione di ceneri solubilizzata dallacido nitrico è stata diluita con acqua ultrapura (UPW) ed sottoposta ad analisi elementare **MP-AES**:

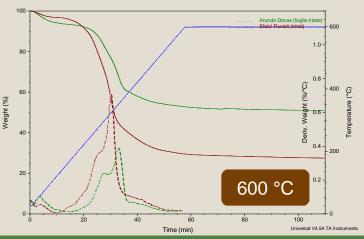
- Quantificazione dei principali elementi tramite single-point calibration
- Risultati espressi come mg/kg di biomassa

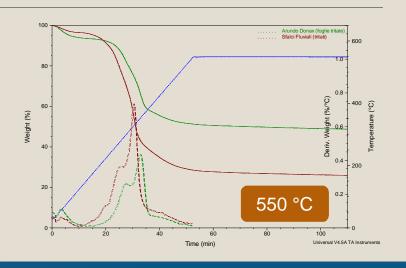
· Pb	Elemento	A.D. (fusto)	A.D. (foglie)	Sfalci fluviali
	Р	565	743	1308
	Se	13	18	18
	Zn	6	42	37
	Sr	3	44	43
	Ca	295	5567	3343
	Fe	51	273	102
	K	15481	12686	17463
	Mg	405	2398	1030
	Mn	8	105	53
	Al	28	169	128
	Na	54	115	2364

SINUAZIONE DE PROCESSIONE DI POLICE DI POLICE

- Analisi su A.D. (foglie) e campione di sfalci fluviali
- 1° perdita (umidità) = 4,5 . 8,0%
- 2° perdita (pirolisi) = 70 . 73 %(d.b.)
- Residuo (biochar) = 27. 30 % (d.b.)
- Valutata lonfluenza di T di setpoint:
 - 450, 500, 550, 600 °C
- Valutata la rampa di riscaldamento:




Effettuata tramite TGA in ambiente inerte



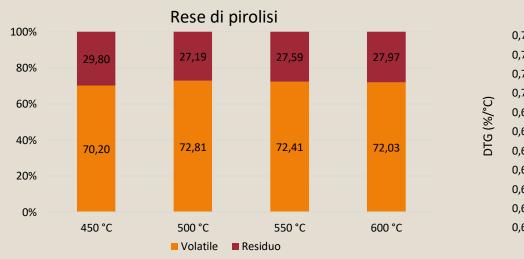
Confronto tra A.D. e sfalci fluviali

Sfalci da manutenzione alvei fluviali

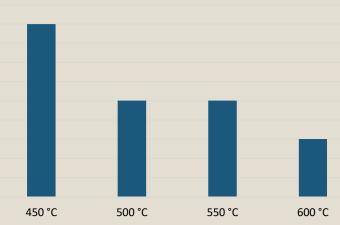
Pirolisi inizia e ha luogo a T
 v_{max} di degradazione a T
 Perdita di peso *

anche (ma non solo) per il minor contenuto

di ceneri

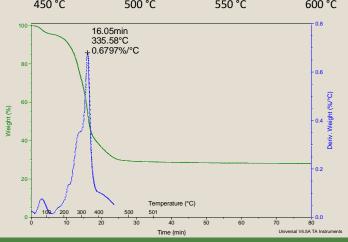

17/18

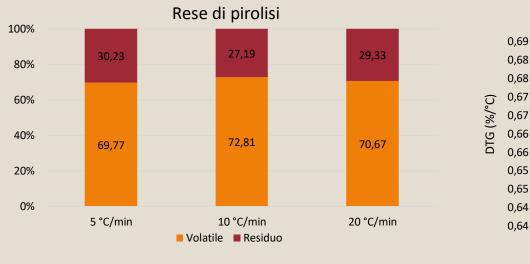




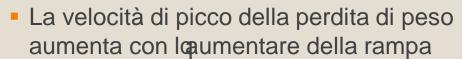
Influenza della temperatura (R = 10

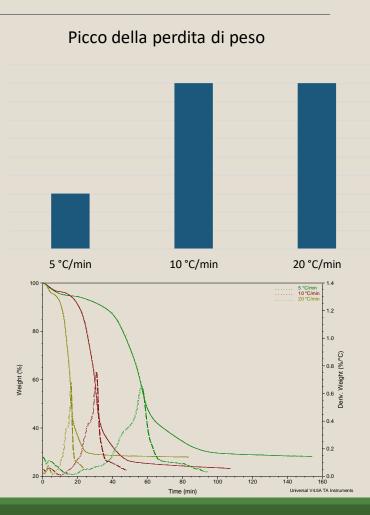
°C/min)



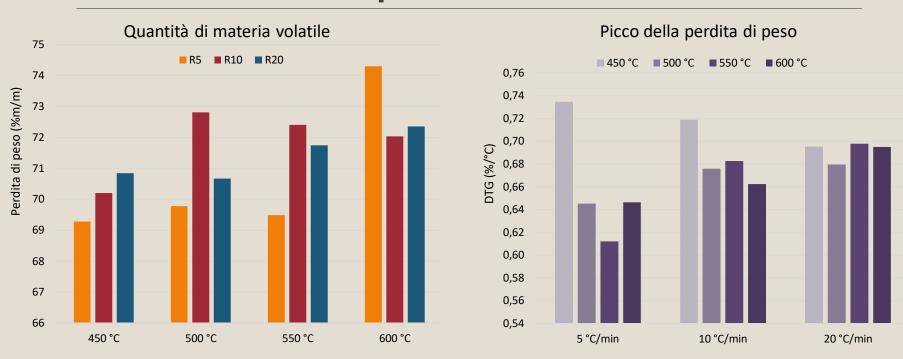


Picco della perdita di peso


- Oltre i 500 °C la temperatura di set-point non influenza significativamente la pirolisi.
- A 450 °C il residuo è più elevato → pirolisi incompleta.
- La velocita di picco della perdita di peso (in funzione di T) sembra diminuire in funzione


Influenza della rampa di Recuperolle regelico Biorn riscaldamento (T = 500 °C)

influenza la quantità di materia



pirolizzabile.

Risultati complessivi

- La quantità di materia pirolizzabile con la rampa più lenta è sempre inferiore, tranne a 600 °C.
- La velocita di picco della perdita di peso, in funzione della T di set-point, aumenta con la rampa utilizzata, tranne per T = 450 °C, dove il trend è opposto.

Conclusioni

- <u>Umidità</u>, per tutti i campioni analizzati, intorno al 6,5 . 7,0 % in peso. Queste quantità non risultano problematiche né in pirolisi né in gassificazione.
- Ceneri in A.D. (foglie) superiori di 4 volte ad A.D. (fusto) (16 vs 4 %).
 - o Molta variabilità allonterno del campione analizzato (tra il 12 ed il 20 %).
 - Necessario un buon numero di campioni per ottenere un dato complessivamente più affidabile.
- Ceneri negli sfalci da manutenzione alvei fluviali simili ad A.D. (fusto) (6 vs 4 %).
- Composizione delle ceneri degli sfalci da manutenzione alvei fluviali simile ad A.D. (foglie), tranne per la quantità di Si (29 vs 68 %). In tutti i casi K, P, Mg, Ca ed Na gli elementi maggiori.
- Simulazione di pirolisi sulle foglie di A.D. e sul campione di sfalci, entrambi tritati.
 - Pirolisi terminata prima della T di set-point (450 . 600°C) e della successiva isoterma.
 - Sfalci da manutenzione alvei fluviali degradano a T inferiori rispetto ad A.D. (foglie).
 - A.D. (foglie) genera un residuo solido a termine pirolisi guasi doppio rispetto agli
 Climathon Carpi, 26 ottobre 2018